Long-range beam-beam interactions in RHIC

Wolfram Fischer, BNL

T. Sen, FNAL, J. Qiang, LBNL

U. Dorda, J.-P. Koutchouk, F. Zimmermann, CERN

LARP IR Workshop, St. Charles, Illinois 3 October 2005

Contents

- 1. RHIC experiment at injection in 2005
- 2. Some simulation results
- 3. Long-range compensator design for RHIC
- 4. Further experimental plans

RHIC overview

RHIC Interaction Region (I)

RHIC Interaction Region (II)

Bunch length and spacing for rf storage system (2520 buckets), 120 bunches (only 60 bunches in 2001)

RHIC long-range beam-beam scans 2005

Observation of beam lifetime as function of

- Transverse tunes
- Vertical separation

Quantity	Unit	value
Proton energy E	GeV	24.3
Bunches per beam N	•••	1
Bunch intensity $N_{\rm b}$	10^{11}	1-2
Norm. emittances ε_x , ε_y (95%)	mm.mrad	20, 13
Long-range interaction location	m from IP	0.0, 10.6
Transverse tunes (Q_x, Q_y)	•••	B(.733,.722) Y (.727,.723) B(.735,.722) Y(.728,.723) B(.738,.725) Y(.727,.722) B(.739,.727) Y(.726,.739)
Vertical separation	mm	10 - 0
	σ	11 - 0

RHIC experiment – control of interaction location

Wall current monitor at IP4 (sees both beams)

Interaction at nominal IP

Interaction moved by 10m

Collision at s = 0 m, Blue beam moved vertically Tunes B (0.733,0.722) Y (0.727,0.723)

Collision at s = 10.6 m, Blue beam moved vertically Tunes B (0.735,0.722) Y (0.728,0.723)

Collision at s = 10.6 m, Yellow beam moved vertically Tunes B (0.738,0.725) Y (0.727,0.722)

Collision at s = 10.6 m, Blue beam moved vertically Tunes B (0.739,0.727) Y (0.727,0.738)

Y: attempt to improve lifetime, small changes in (Q_x, Q_y) 100 9 90 80 Vertical separation [6 70 Beam decay [%h] 60 50 Blue 40 Yellow Separation 30 20 10 0 10:39 10:42 10:45 10:48 10:50 10:56 10:53 Time

Experiment – tune diagram

RHIC experiment

- Did not correct tunes and orbits for each new separation change
- Beam lifetime clearly dependent on vertical separation
- Found strong tune dependence of lifetime, ruled out tune change due to orbit change as dominating effect
- With mirrored tunes beam lifetime of both beam comparable

Effects of long-range beam-beam interaction observable at RHIC injection with a single bunch.

Lifetime versus separation

SPS : $\tau \approx 5 \text{ms} (d/\sigma)^5$ [measured 11/09/04]

Tevatron: $\tau \sim d^3$ [reported in F. Zimmermann, LTC 11/24/04]

RHIC : $\tau \sim d^4 \text{ or } d^2$ [measured 04/28/05, scan 4]

Simulation – Ji Qiang, LBNL

Scan 2 – rms emittance vs. time

Simulation – Ulrich Dorda, CERN

Scan 1 parameters for Blue, 4 sec real time

Code: BBTRACK (weak-strong, multi-particle, bb is the only nonlinearity)

Simulations – are we missing something?

Transverse echoes measurements show stronger diffusion for protons than for heavier ions (without BB)

RHIC BBLR design – locations

RHIC BBLR design – drawing

please comment

Main features:

- -elliptic copper bar (a/b = 59%)
- air cooled heat sinks
- on vertically movable stand (60mm movement)

RHIC BBLR design – parameters

Integrated strength per long-range collision	Am	9.6
Integrated strength of compensator IL	Am	125
Length of wire L	m	1.5
Major half axis of elliptic bus bar a	mm	4.0
Minor half axis of elliptic bus bar b	mm	2.4
Output parameters		
Current in wire <i>I</i>	A	83
Electric resistance R	$m\Omega$	0.87
Voltage U	mV	72.8
Electric power P	W	6.1
Max temperature change ΔT_{max}	K	100
Change in length due to ΔT	mm	1.7

~10x single bunch

please comment

RHIC BBLR - DC PS

Power supply specifications:

- $\Delta I/I \le 10^{-4}$
- no requirement on long-term I stability (%/hr ok)
- PS with controllable set point
- Inductance in series (12S12 sextupoles) to reduce ripple

RHIC BBLR - AC PS

[2nd draft of Specifications and Requirements for a Pulsed BBLR in LHC and SPS]

Fig. 2: Pulse pattern of a BBLR in LHC, normalized to a maximum strength of 1. One full revolution period is shown, after which the above pattern repeats.

What would be an equivalent test in RHIC?

RHIC experimental program proposal

- (d,Q_y) scan at 100 GeV
- Single and multiple long-range interactions

Run-6 (2006) w/o BBLR (ask for 2x3hrs)

Run-7 (2007) with 1 or 2 dc BBLR

Run-8 (2008) with ac BBLR

RHIC BBLR

Possible schedule:

By May '06: long-range experiments without compensator (RHIC Run-6)

By May '06: design and manufacturing of compensator

By Oct '06: compensator installation and testing

By May '07: long-range experiments with compensator (RHIC Run-7)

By May '07: design and manufacturing of pulsed PS

By Oct '08: installation and testing of pulsed PS

By May '08: long-range experiments with pulsed compensator (RHIC Run-8)

Summary

- 1. In RHIC, beam loss rate at injection varies sufficiently with vertical separation
 - → measurable long-range beam-beam effect
- 2. Some features were reproduced in simulation
 - → still need to improve qualitative agreement
 - → quantitative comparison desirable
- 3. Progress in compensator design for RHIC
 - → basic parameter range established
 - → basic mechanical and electrical design done
- 4. RHIC study plan evolving